Strong inhomogeneity of Eschenburg spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological properties of Eschenburg spaces and 3-Sasakian manifolds

We examine topological properties of the seven-dimensional positively curved Eschenburg biquotients and find many examples which are homeomorphic but not diffeomorphic. A special subfamily of these manifolds also carries a 3-Sasakian metric. Among these we construct a pair of 3-Sasakian spaces which are diffeomorphic to each other, thus giving rise to the first example of a manifold which carri...

متن کامل

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

Strong convergence of modified noor iteration in CAT(0) spaces

We prove a strong convergence theorem for the modified Noor iterations‎ ‎in the framework of CAT(0) spaces‎. ‎Our results extend and improve the corresponding results of‎ ‎X‎. ‎Qin‎, ‎Y‎. ‎Su and M‎. ‎Shang‎, ‎T‎. ‎H‎. ‎Kim and H‎. ‎K‎. ‎Xu and S‎. ‎Saejung‎ ‎and some others‎.

متن کامل

Some topological properties of fuzzy strong b-metric spaces

‎In this study‎, ‎we investigate topological properties of fuzzy strong‎ b-metric spaces defined in [13]‎. ‎Firstly‎, ‎we prove Baire's theorem for‎ ‎these spaces‎. ‎Then we define the product of two fuzzy strong b-metric spaces‎ ‎defined with same continuous t-norms and show that $X_{1}times X_{2}$ is a‎ ‎complete fuzzy strong b-metric space if and only if $X_{1}$ and $X_{2}$ are‎ ‎complete fu...

متن کامل

Strong completions of spaces

A non-empty subset of a topological space is irreducible if whenever it is covered by the union of two closed sets, then already it is covered by one of them. Irreducible sets occur in proliferation: (1) every singleton set is irreducible, (2) directed subsets (which of fundamental status in domain theory) of a poset are exactly its Alexandroff irreducible sets, (3) directed subsets (with respe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 2002

ISSN: 0026-2285

DOI: 10.1307/mmj/1022636754